
Journal of Statistical Physics, Vol. 92, NoS. 1/2, 1998

On Criticality for Competing Influences of Boundary
and External Field in the Ising Model
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We continue a study of Schonmann (1994), Schonmann and Shlosman (1996),
and Greenwood and Sun (1997) regarding the competing influences of bound-
ary conditions and external field for the Ising model. We find a critical point B0

in the competing influences for low temperature in dimension d > 2.
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1. INTRODUCTION AND RESULTS

Consider the Ising model on Zd. Its configuration space is Q = { - 1, 1}zd.
Let F be the set of all finite subsets of Zd. For any Ae^, define
Q(A) = { — 1,1)A . Typical configurations in Q or Q(A) are denoted by
C, N,,.... Denote the value of a at xeZd by ox. For two sites x and y in Zd,
define \x —y\ = max{\x1 — y 1 \ , . . . , \ x d — y d \ } . The energy function of the
Ising model in A, with boundary condition rj and external field s is

for a € Q. Given a set A £ ̂  and a configuration n, we introduce
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The Gibbs measure in A with boundary condition r\ and external field s at
the temperature T— 1//? is defined on Q as

where ZA,n , s is the normalizing constant given by

Expectation with respect to nA,n,s is denoted by EA , n , s . When rj= -1 or
+ 1, we replace r] by — or +. It is well known that UA _ 0 (uA, + ,0) con-
verges weakly to the pure (— )-phase p_ (pure ( + )-phase u + ) as A grows
to Zd. For d > 2, there is a critical temperature Tc > 0 such that u. _ = u +

if T> Tc and /u_ ^n+ if T< Tc, in which case a phase transition occurs.
See Ellis (1985), Georgii (1988) or Chen (1992).

Assume that T< Tc Let A ( 1 / h ) be the cube in Zd with side length 1/h
and centered at the origin, for all h > 0. Consider the Gibbs measure
f i A ( 1 / h ) , -,sh, where the external field sh depends on h and decreases to 0 as
h\0. What will be the possible limit of the Gibbs measure uA(1/h) -,sh as
h \ 0? Intuitively, when h \ 0, the negative boundary condition would force
uA(1,h), -,sh to converge to the pure ( —)-phase u but on the other hand
the small positive external field sh would pull nA(1/h )Sh to the pure (+ )-
phase ju +. In other words, when h \ 0, the behavior of the Gibbs measure
uA(1 /h ) , - , sh depends on the balance between the competing influences of
the negative boundary condition and the positive external field $h. This
phenomenon of competing influences has been investigated by several
authors. Martirosyan (1987) first proved that if one sets sh = Bh, where
B is a constant, then at low temperature T and with large B, the Gibbs
measure nA(1/h),-,Bh converges weakly to the pure ( + )-phase p + . The
choice of sh = Bh is intuitively reasonable, since the negative boundary con-
dition influences Gibbs measures by a surface order whereas the external
field is of a volume order. Schonmann (1994) (referred to in the sequel as
[Sch]) showed that at low temperature T, there are values B 1 ( T ) < B 2 ( T )
such that when B < B 1 ( T ) , u A ( 1 / h ) _ Bh converges weakly to /u_ and when
B> B2(T), the limit is /u + . This says that the negative boundary condition
dominates in the limit when B < B 1 ( T ) whereas the small external field
dominates when B> B2(T). The question, then, is whether for T<TC there
exists a critical value B0 = B0(T) = B 1 ( T ) = B2(T) such that nA(1,h),-,Bh

converges to ft _ when B<B0 and to u + when B > B0. In the case of d = 2,
this question was completely solved by Schonmann and Shlosman (1996).
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One of their methods is to extend the surface order large deviation results
of Ioffe (1994, 1995) to a full large deviation principle. For higher dimen-
sions, Greenwood and Sun (1997) ([GS] hereafter) proved the criticality
of a particular value B0(T) for all T< Tc, but only in terms of the con-
vergence of average spins rather than in terms of weak convergence. This
paper extends the results presented there by showing that for low tem-
perature and the same critical value B0, nA(1,h)-,bh converges weakly to
H_ when B<B 0 and to n + when B > B0.

Let us now recall the definition of B0 from [GS]. It is known that the
spontaneous magnetization m*. :=E+[a0] ( = — E _ [ a 0

] is zero when
T> Tc and positive when T< Tc. The average of a in A ( 1 / h ) , called the
average spin, is defined by

It is also well known that XA ( 1 / h ) converges a.s. as h\0 to -m£ (m$)
under /u _ (ji + ).

Define, for all t e R,

The function <£(t), called pressure function in large deviation theory, is
convex and continuous on R by Holder's inequality. Define

For all T< Tc, B0 is nonnegative and for small T, it is positive ([GS]). It
is still an open problem whether B0>0 for all T<TC. It is believed so,
though. At the end of this section we see that B0 converges to 2d as T goes
to zero. We know from [GS] that for all T<Tc , if B<B0 then for all
£>0,

whereas if B>B0 then the average spin, XA ( 1 / h ) , no longer converges to
— M* under f A ( 1 / h ) , -,BH- Now we state our main results.

Theorem 1. For all T<TC, (a) 0 < B 0 < 2 d / m * , and (b)
VA(1/h)-,Bh converges weakly to p._ as h\0 if B<B0.

Theorem 2. For small temperature T and all B> B0,^A(1/hn) _ Bhn

converges weakly to /u+ along a subsequence hn \0. Moreover, nA(1/h), _,Bh,
converges weakly to n+ as h\0 if B>2d/mj-.
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Theorems 1 and 2 together yield that B0 is a critical value of the
balance parameter B for low temperature. Note that in Theorem 2 the
weak convergence of uA(1/h),-,Bh to u+ proved only along a subsequence
hn \0 for Be(B0, 2d/m*\ . It is reasonable that this should hold as /z\0,
but our method does not prove this. A sufficient condition for this, seen in
the proof of Lemma 3 below, is that the limit in (1.5) exists.

Theorem 2 of [Sch] says that nA(1/h) _ Bh converges weakly to n_ if
B < B 1 ( T ) = 2d(p /P) a n d t o / z + if B>B2(T) = 2d(\ + S ( T ) ) , where /?' =
(i — log b and b is some constant, and S(T) is a positive valued function
which vanishes as T\0. Obviously, B 1 ( T ) < B 0 < B 2 ( T ) . As T\0, B 1 ( T ) ,
B0 and B2(T) all converge to 2d. Hence the lower and upper bounds B 1 ( T )
and B2(T), obtained in [Sch], are increasingly accurate as T\0. Our con-
tribution is to show that, for small T, there is a threshold between these
bounds.

2. THE PROOFS

To prove Theorem 1(b) we first show that any weak limit n of the
Gibbs measures JA ( 1 / h ) , - , B h has the same one dimensional marginal first
moments as u_. Then we use the monotonicity u _ ^ f t , to conclude that
y«_=/i.

Lemma 1. For all T<Tc ,B<B0 and xeZd,

Proof. We will use the result about average spin (1.7) to prove (2.8).
Suppose that B<B0. The FKG inequality implies that

for all x e Zd. So we need only prove that

for all x e Zd. We first show (2.10) for x = 0 and all B < B0 and then extend
it to all xeZd. Fix B1 e (B, B0) and let B/B1 = 1 -e. Note that, for each x
in the box A(e/h), there is a box A x (1 — e ) / z ) inside A ( 1 / h ) and centered
at x. By the FKG inequality and the translation invariance of Gibbs
measures,
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In the last step we used that, by FKG, E A ( 1 / h ) - , 0 [ a x
] increases to

— m*. as /;\0. Dividing the above inequalities by \ A ( 1 / h ) \ and taking the
upper limit, we get

By (1.7), since B1 <B0 , , the LHS equals -m*. This proves (2.10) for x = 0
and all B<B0. Now let xeZd be arbitrary. Then x e A ( 1 / h ) for all small
h>0. Define h'>0 such that 1/h' = 2 \x\ +1/h. Then h'<h, h/h->1 as
h\0 and the box A x ( 1 / h ' ) centered at x contains A (1 /h ) . Choose
B1 e (B, B0). Note that Bh/h' < B1 for small h > 0. By the FKG inequality,

for small h>0. Combining this with (2.10) for x = 0, we obtain (2.10) for
xeZd .

The following Lemma 2 is from Liggett (1985, Corollary 2.8, p. 75).
For rj,£eQ, define n< £ if m ( x ) < £(x) for all xe Zd. A function f on Q is
said to be increasing if f ( n ) </(£) whenever n<e. For any two probability
measures u1 and u1 define u1<u2 if £ul[f] <Eu2[f] for all bounded local
increasing functions f on Q.
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Lemma 2. Let u1 and p2 be two probability measures on Q such
that u 1 ^ /u 2 . Suppose they have the same one dimensional marginal first
moments, that is E u 1 [ a x ] =Eu2[ox] for all x€Zd. Then u1 = u2.

Proof of Theorem 1. (a) It was proved in [GS] that o ( t ) = -m^-i
for t< 0. Hence B0 > 0. Changing the negative boundary condition to
positive and using the fact that Z A ( 1 / h ) _ _ , 0 = Z A ( 1 / h ) _ + , 0 and Jensen's
inequality, one has

Hence <P(t)^ -2bd + m* for all t>0. By the definition of B0, it cannot
exceed 2T times the value of t such that — m * t = —2ftd + m^t, that is,
B 0 < 2 d / m * .

(b) The Gibbs measures nA(1/h),-Bh are weakly relatively compact
since Q is compact. Let t be any weak limit of f A ( 1 / h ) , -,Bh along a sub-
sequence. The FKG inequality implies that u_< / / . By Lemma 1, n and/^_
have the same one dimensional marginal first moments. Lemma 2 implies
that / / = / / _ , a n d w e have weak convergence o f nA(1/h)-Bh t o _ a s / ! \ 0 . |

Theorem 2 is an extension of Theorem 2 ( i i ) of [Sch] in which he
proved the weak convergence of nA(1/h),Bh, to u+ as /z \0 for low tem-
perature T and B exceeding some constant B2(T}. We will use his strategy
to prove Theorem 2.

The idea is to show that for B > B0, with high probability under
^A(i/h), -,Bh there will appear a large contour in A ( 1 / h ) , and then to show
that as h \ 0, this large contour will eventually cover the whole space, and
hence the Gibbs measures uA(1/h), - ,Bh converge to /u+ as h\0.

Contours are defined as usual ([Sch]). For any contour y, let 0(y) be
the set of sites inside of y. To study the occurrence of large contours, we
denote by Ah_e the set of configurations in &A ( 1 / h), - which have at least one
contour surrounding a number of sites larger than the volume of A(s/h),
i.e.,

Note that Ah>e (with h, e fixed) is increasing, in the sense that its indicator is
an increasing function as defined earlier, because of the negative boundary
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condition. The first step is to show that the probability u A ( 1 / h ) , - , B h (A h , E )
converges to 1 as h \ 0 for B > B0 and e in a certain range.

Let b be the combinatorial constant defined by [ Sch ] in his expression
(4). It appears in a bound for the number of families of contours satisfying
certain constraints which we need not set out here. We will use inequality
(44) of [Sch], which requires the quantity b' : = /?-log6 to be positive.
Later we will use that /?'//? -»1 as T goes to 0.

Lemma 3. Suppose ft > log b.

(a) For each Be(B0, 2d/m * ] , there exists a subsequence hn \0 such
that for all e<2d(B'/?)/B there exists a c>0 such that,

(b) If B>2d/m$, then for all e<w£/?'//? there exists a c>0 such
that

Remark 1. If Be(B0, 2d/m$], we have 2d(/?'//?)/Bs/w£/?'//?. Then
the e in both (a) and (b) can take values up to m * / i ' / [ J , which depends
only on the temperature T and converges to 1 when T goes to 0, since
l i m T / 0 M

* . = 1.

Proof. The proof is a modification of that of Lemma 8 in [Sch]. Let
A = eB. For any subset E of Q, define

Let Re/h denote the complement of Ah e. Then
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Under our assumption A=eB<2dB/B. From inequality (44) of [Sch],
which holds for all B > 0,

for e<2d(p ' /B) /B . Note that h' = hB. So

for e < 2d(B'Bf})/B. On the other hand, it is not difficult to see that for h > 0,

Now choose a subsequence so that

The definition of B0 says that $(f}B/2)> -m* BB/2 for all B>B0. From
(2.14), (2.16) and (2.25) (note that the limit exists in (2.25)), we have

This proves (2.12).
To prove (b), let B>2d/m * . Using (2.17) and (2.11), we obtain that

By (2.14) and (2.16),

for n<2d(B/p)IB. This proves (2.13) for e<2d(p'/p)/B. Finally, if e1 <
m * p ' / p , choose B1 such that B>B 1 >2d/m* a and e 1 < 2 d ( f t ' / p ) / B 1 . Note
that u a ( 1 / h ) , - B h ( A h , e 1 ) f * n A ( 1 , h ) , - . B 1 h ( A h , e 1 ) since A h _ E 1 is an icreasing set.
Inequality (2.13) for E1 follows from (2.19) for B = B1 and £ = £,. |
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Proof of Theorem 2. The proof is much like the proof of Theorem 2
(ii) in [Sch]. Let B be the set of all eeQA ( 1 / h } ,_ such that the infinite
cluster of negative spins in a intersects the box A ( 1 / ( 2 h ) ) . The objective is
to show that nA(1/h),Bh

(B) converges to zero as h\0. Now let aeQ and
let e(ff) be the set of all sites in Zd which belong to infinite clusters of
negative spins in a.

Suppose, for all a > 0, we can find a subset &" of B such that for small
h>0,

Also suppose we can prove that for all a<(B/2 — \ogb-log2)/(2/W)
and B>0,

Then we can finish the proof as follows. Let x0= l/(8d), l0 = a 0 / ( 1 6 ( 2 d — 1))
and £0 = (1 -/o)1/d- Then there exists a T0>0 such that for all T< T0, we
have x0<(B/2-log b>-log2)/(2bd) and e 0 < m * f t ' / f t . Now if erees0 the
second set on the right hand side of (2.20), then for all contours y in a,

which implies aeA c
n , e 0 by the definition of An^. Therefore we can apply

Lemma 3 to obtain

as h\0 if B > 2 d / m * , and as h\0 along a subsequence if Be(B0, 2d/m%-~\.
So from (2.20), (2.21) and (2.22) we conclude that for T< T0,

as h\0 if B>2d/m^, and as h\0 along the subsequence if
B e ( B 0 , 2 d / m [ ) .

Note that for each o&Q A ( 1 / h ) , _/B there exists a contour in a which
surrounds the box A ( 1 / ( 2 h ) ) and such that the spins at the inner boundary
of the contour are all positive. Therefore, the argument of [Sch], p. 19,
conditioning on the contours and then using the Markov property of
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Gibbs measures and the FKG inequality, gives that for any increasing local
function f on Q,

as h\0 if B > 2 d / m * , and as A\0 along the subsequence if Be
3(B0, 2d/m'$-~\. Theorem 2 now follows.

It now remains to define carefully a $" satisfying (2.20) and then
prove (2.21). Basically speaking, for any <re^, if the volume of ^(a) n
A ( 1 / h ) has the order of the whole volume of A (1 /h ) , then we put it in Ea.
Those a e B which do not have that many sites in their negative cluster in
A(1/h) , are left in J"*. The delicate contour argument presented in [Sch]
can then be used to show Ba has small probability when h is small. Since
our setting is a little different from that in [Sch], we point out the
necessary changes. In [Sch], the Gibbs measures f A ( 1 / h ) h _ , / , are defined in
the box A(B/h) with external field h, whereas our Gibbs measures in the
box &(1/h) with external field Bh. This amounts to a change of variable
in h. Let Vi={xeZd: \\x\\ x < i } . Define I= {i: A(3/(4h)) c Vi <=A1/h)}.
A cr-chain is a set of sites {x1, x2,..., xn} cZd at which a has negative spin
and \\xi+l — X i \ \ = 1, for all 1 < i - n — 1 . Given ere£2, define, for each iel,
M i ( a ) as the set of sites xe Vi n^(cr) which are connected to A ( 1 / ( 2 h ) ) by
cr-chain entirely contained in Vi_l except, possibly, for its end point at x.
Let L i (7) = Mi(<7)\K,._,. Define

and «- = UieI.l<1i,l , .
For this J>a, (2.20) is obtained from Lemma 10 of [Sch] by replacing

h there by 2dh. To show (2.21), repeat the proof of Lemma 11 of [Sch],
with the following changes. Replace A(B/h), A(3d/(2h)), A(2d/h), A(d/h]
there by A (1 /h ) , A(3/(4h)), A (1 /h ) , A ( 1 / ( 2 h ) ) , respectively. Replace the
external field h there by Bh. The coefficients of 1/h in the exponential com-
ponents at the end of the proof will then be changed by a constant mul-
tiple, which does not change the result. The condition B^2din Lemma 11
of [Sch] is not needed in our setting. It is imposed in [Sch] only to ensure
thntA(2d/h)c:A(B/h).
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